Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control ✩
نویسندگان
چکیده
The stability and bifurcation of a van der Pol-Duffing oscillator with the delay feedback are investigated, in which the strength of feedback control is a nonlinear function of delay. A geometrical method in conjunction with an analytical method is developed to identify the critical values for stability switches and Hopf bifurcations. The Hopf bifurcation curves and multi-stable regions are obtained as two parameters vary. Some weak resonant and non-resonant double Hopf bifurcation phenomena are observed due to the vanishing of the real parts of two pairs of characteristic roots on the margins of the “death island” regions simultaneously. By applying the center manifold theory, the normal forms near the double Hopf bifurcation points, as well as classifications of local dynamics are analyzed. Furthermore, some quasi-periodic and chaotic motions are verified in both theoretical and numerical ways. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Analysis and Controlling of Hopf Bifurcation for Chaotic Van Der Pol-duffing System
Analysis and controlling of bifurcation for a class of chaotic Van der PolDuffing system with multiple unknown parameters are conducted. The stability of the equilibrium of the system is studied by using Routh-Hurwitz criterion, and the critical value of Hopf bifurcation is investigated. Based on the center manifold theory and normal form reduction, the stability index of bifurcation solution i...
متن کاملDouble Hopf bifurcation in delayed van der Pol-Duffing equation
In this paper, we study dynamics in delayed van der Pol–Duffing equation, with particular attention focused on nonresonant double Hopf bifurcation. Both multiple time scales and center manifold reduction methods are applied to obtain the normal forms near a double Hopf critical point. A comparison between these two methods is given to show their equivalence. Bifurcations are classified in a two...
متن کاملAn Efficient Method for Studying Weak Resonant Double Hopf Bifurcation in Nonlinear Systems with Delayed Feedbacks
An efficient method, called the perturbation-incremental scheme (PIS), is proposed to study, both qualitatively and quantitatively, delay-induced weak or high-order resonant double Hopf bifurcation and the dynamics arising from the bifurcation of nonlinear systems with delayed feedback. The scheme is described in two steps, namely the perturbation and the incremental steps, when the time delay ...
متن کاملThe homotopy Analysis Method in bifurcation Analysis of Delay differential equations
In this paper we apply the homotopy analysis method (HAM) to study the van der Pol equation with a linear delayed feedback. The paper focuses on the calculation of periodic solutions and associated bifurcations, Hopf, double Hopf, Neimark-Sacker, etc. In particular we discuss the behavior of the systems in the neighborhoods of double Hopf points. We demonstrate the applicability of HAM to the a...
متن کاملA Note on the Solutions of the Van der Pol and Duffing Equations Using a Linearisation Method
We present a novel application of the successive linearisation method to the classical Van der Pol and Duffing oscillator equations. By recasting the governing equations as nonlinear eigenvalue problems we obtain accurate values of the frequency and amplitude. We demonstrate that the proposed method can be used to obtain the limit cycle and bifurcation diagrams of the governing equations. Compa...
متن کامل